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Strain analysis of passive elliptical markers: success of de-straining methods 
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Abstract--Where passive elliptical markers arc homogeneously and coaxially strained thc strain ellipse ratio may 
be estimated to within 10%. This takes account of inaccuracies in measurement and does not assume knowledge 
of the strain cllipsc'~ orientation. Between 511 and 75 markers are nccdcd to achieve this accuracy and larger 
sample sizes do not significantly improve on this. The de-straining methods use two different tests for randomness 
of the de-strained fabric. One of thesc, the runs test, is particularly sensitive to clustering in thc angular 
distribution and max bc of partict, lar value in de-straining sedimentary fabrics De-straining mcthods arc 
warranted where the strain ellipse ratio is/>3.0 in natural data. 

INTRODUCTION 

CONSIDERABLE attention has been paid to the analysis of 
strain of homogeneously and passively deformed ellipti- 
cal markers (Ramsay 1967, Dunnet 1969, Dunnet & 
Siddans 1971, Harvey & Ferguson 1981, Lisle 1977a, 
1977b, Matthews et al. 1974, de Paor 1980, Seymour & 
Boulter 1979. Shimamoto & Ikeda 1976, Siddans 1980a, 
b, Le Theoff 1979, Peach & Lisle 1979). The hope is that 
naturally occurring objects which may be approximately 
ellipsoidai can, under some circumstances, behave pass- 
ively and that the various refinements of Ramsay's 'Rf&b' 
approach may be applied. In practice, successful and 
easy applications of the Rf/th approach are most likely to 
occur where homogeneous strains have accumulated 
coaxially and where both the angular-distribution and 
the shape-distribution of the markers was random prior 
to strain. These ideal conditions form premises for the 
tests in this paper. 

In this article I attempt to illustrate the accuracy and 
precision of two methods of applying the Rf/~b de-strain- 
ing approach, taking into account the nature of the 
initial angular distribution of the markers' long axes, the 
propagation of observational errors on the markers' 
shapes and orientations, the range of shapes of the 
original markers and the sample-size. Throughout, note 
has been taken of the circular nature of the widely 
dispersed angular-distributions (Mardia 1972). 

Where null hypotheses have been tested statistically a 
significance level of a = 0.05 has been chosen; we are 
willing to take a 1 in 20 chance that we will reject a 
hypothesis when it is actually true. Samples in the range 
50-200 are considered large, less than 50 are considered 
to be small. 

To avoid confusion, a group (an array) of elliptical 
markers which has not yet been deformed will be termed 
a pre-strain array. After deformation this is termed a 
strained array. If some algebraic processes are applied to 
restore the strained array to its original pre-strain condi- 
tion it will be termed a de-strained array. This avoids the 
ambiguity of the commonly used term 'undeformed'  

which could imply that an object or array never was 
strained or alternatively that it has had its state of strain 
algebraically removed. 

The theme of the work described here is to follow 
Siddans (1980a, b) and model pre-strain arrays of ellipti- 
cal markers and then strain them by known amounts to 
simulate strained arrays of elliptical markers. This simu- 
lated field data on strained markers has then been 
analysed by the minimisation methods to determine the 
success of the strain analysis methods and other tests 
associated with them. Since the strains are actually 
known it is possible to determine the effectiveness of the 
methods under different conditions. The computer prog- 
rams used were different from that used by Peach & 
Lisle (1979). 

The fundamental equations relating the initial shape 
axial ratio (X/Ro), finite-strain ellipse ratio (~/Rs) 
marker shape-ratio (X/Rf), initial orientation (0) and 
final orientation (~b) with respect to the principal exten- 
sion directions are for a single elliptical marker: 

2R~(Ro - 1) sin 20 
tan 26 = 

R I = 

(Ro+ 1)(Rs-  1) + ( R o -  1)(Rs + 1)cos20 
(Ramsay eqn. 5-22) 

tanE~b(1 + Rotan20) - Rs(tan20+Ro) 

RstanEd,(tan20 + Ro) - (1 + Rotan20)" 
(Ramsay eqn. 5-27) 

These formulae, or variants of them, are used for 
transforming the individual elliptical markers' axial 
ratios and long-axis orientations in either straining or 
de-straining processes. In the simpler case of rigid mar- 
kers, Borradaile (1976) applied a x2-minimum method 
to optimise the goodness-of-fit of a de-strained array and 
a model of it. Lisle (1977a) has extended this to passive 
elliptical markers. In his method the arrays of strained 
markers are de-strained in successive steps, using a 
different de-straining ratio each time. (In this study the 
optimum incremental change in the de-straining ellipse 
axial ratio was found to be 0.01). The reciprocal strain 
ellipse is applied in a direction which is believed to be 
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perpendicular to the strain ellipse (Dunnet & Siddans 
1971, p. 316). The intention is that at some step in the 
process we will choose a de-straining ratio which success- 
fully restores the array of markers to its pre-strain state. 
Our attention should be focused on three items: 

(1) the orientation of the strain ellipse is unknown; 
(2) the original orientation-distribution of the mar- 

kers is unknown (if it is believed to be random this 
can be modelled) and 

(3) a method for comparing the de-strained array 
with the modelled pre-strain array must be 
selected. 

Assuming that these matters can be resolved the 
de-strained array is compared with its modelled pre- 
strain equivalent until the best-fit is found (given by a 
minimum value of a statistic). At this point the de-strain- 
ing ellipse should have the same axial ratio as the strain 
ellipse which produced the observed deformation. 

Simulation of  observations of  tectonically strained 
markers 

Arrays of pre-strain elliptical markers were created. 
The angular distributions were selected randomly over 
the complete angular range. The axial ratios of the 
markers' shapes were also selected randomly over the 
range 1.0-2,25. (A weak unimodal shape distribution 
produces little difference). In the main batch of tests 
illustrated, sample sizes were 25, 30, 40, 50, 75,100 and 
200 markers. A total of 108 different arrays were gener- 
ated to provide a meaningful test of the de-straining 
methods at each sample size. 

Each pre-strain array was then strained by known 
amounts in known directions to simulate data on natur- 
ally deformed, homogeneously and coaxially strained 
passive markers. Ten finite strain ratios were used: 
V'-ffs = 1.1, 1.2, 1.3, 1.41, 1.5, 1.73, 2.0, 3.0, 4.0 and 
5.0. Thus 1080 different simulations of field data on 
tectonically strained markers were available for testing. 

Simulation of  observational errors 

Hitherto, the strain analysis methods of the Rf/tb 
family have been applied on the assumption that the 
observed data on naturally occurring elliptical strain 
markers are measured with sufficient accuracy that this 
need not be taken into consideration in determining the 
strain. The present simulations defined initial ellipse 
axial ratios and orientations with at least eight significant 
figures, and the simulated strained array similarly had 
angles and axial ratios specified with an unrealistic preci- 
sion and accuracy! How much would the results of our 
strain analyses be affected if we had to measure the 
angles with a protractor and measure the markers' axial 
lengths with a rule in the field? 

I studied such effects using ellipses draughted with 
engineering-quality templates with ellipse axial ratios 
(= x/--R-f) in the range from nearly 1.2 to nearly 5.0. My 

measurements on such ellipses indicate that the mea- 
surements of axial lengths in the range used were nor- 
mally distributed with a standard deviation of 4%, and 
not too sensitive to the actual value of the axial ratio. 
However, the normal distribution of measurements of 
the orientation of the ellipse long axes had circular 
standard deviations (~r) strongly dependent on the axial 
ratio (X/Ro) of the elliptical marker, approximately 
according to the formula: 

2tr = ~ / ( R o )  • exp(4.401197 - ~-R-o). 

in the range of X/--R-o indicated above. 
(In these tests the markers were ideally elliptical 

although in nature added errors would arise from unac- 
ceptably non-elliptical markers. Siddans (1976) has tack- 
led this practical problem.) 

Using these models for the standard deviations of 
physically measured values, randomly selected simu- 
lated 'observational errors' from appropriate normal 
distributions were automatically applied to the simu- 
lated arrays of strained markers to study the effects of 
the propagation of errors. 

All the examples illustrated below show the effects of 
such simulated observational errors. 

DE-STRAINING 

The strain ellipse orientation 

In a situation of natural deformation there may be 
many lines of evidence leading to the recognition of the 
strain ellipse orientation. If, however, we rely solely on 
the information given by the elliptical markers' shapes 
and orientations it is more difficult to estimate the strain 
ellipse direction. 

The vector mean of the long axes of the strained 
particles seems to be the best estimator of the principal 
extension direction. However, it is not as good as one 
would like. The modulus of the angular discrepancy, ~, 
between the true strain ellipse orientation and the vector 
mean is indicated for four different cases in Fig. 1. 

While the discrepancy varies irregularly in magnitude 
on either side of the true strain ellipse orientation the 
discrepancies gradually decrease with advancing strain. 
The angular median (Mardia 1972) shows similar 
behaviour. 

Although the examples in Fig. 1 are severe, it is well to 
recognise that the difference between the true strain 
ellipse long axis and the vector mean of as many as 50 
elliptical markers' long axes can be as high as 10 °. 

Clearly, the accuracy of the vector mean is most 
erratic at low strains. There, fluctuations in I~! result 
from the 'accelerations' of certain critically oriented 
markers in the array which occur because the particles 
are changing shape. Some such markers approach the 
orientation of the strain eliipse's long axis rapidly, over- 
taking other markers which were initially closer in orien- 
tation to the strain ellipse's long axis (see Fig. 2). 
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Fig. 1. The change in value of the modulus of the difference in angle 
between the vector mean  of elliptical markers '  long axes and the long 
axis of the strain ellipse with advancing coaxial strain. The  number s  of  

markers  in the four samples illustrated are 37, 50, 100 and 200. 

The effect of such 'accelerations' of  individual mar- 
kers is most noticeable where it occurs in small samples: 
there,  the few markers which show such behaviour may 
represent a large proportion of the sample. They can 
also render it impossible to reconstruct precisely the 
pre-strain array by any de-straining method which relies 
solely on the vector mean. It should be noted that an 
approach using vector magnitudes is also possible (Har- 
vey & Ferguson, 1981). 

Comparison of the de-strained array with the pre-strain 
model 

Since we believe the pre-strain array to possess a 
random fabric we should really make multiple compari- 
sons of the de-strained array with different pre-strain 
models. This was done in the original application (Bor- 
radaile 1976) where the markers under consideration 
were non-elliptical and, being rigid, did not change 
shape. In the present "context the markers change both 
orientation and shape and it has been found sufficient to 
make comparison with a uniform (regular) distribution 
of orientations for the model of the pre-strain array. 
(This may be due to the fact that the new shapes of the 
particles are an dded source of information about the 
strain.) 

Tests for randomness of the de-strained array 

Two features of the arrays have been selected as a 
basis for comparison. In one, the X 2 method,  the strained 

<2> 
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original passive passive markers 
markers after strain 

Fig. 2. Ell iptical markers at a high angle to the strain ellipse long axis 
may turn toward the strain ellipse's long axis more quickly than 
markers which were init ial ly at a lower angle to the strain ellipse. The 
accelerations of such markers depend on the initial axial ratios (V~R,,). 

initial angles (8) and the strain ellipse ratio (k/-R-~). 

( 'observed ')  array and the model pre-strain array are 
compared on the basis of the number of markers occur- 
ring in corresponding angular intervals. The test expects 
at least five counts (markers in our case) to occur in each 
interval. Furthermore,  some statistical texts recommend 
the use of more than a minimum total number of data (50 
counts) and, in others, a minimum number of intervals 
with a certain number  of counts. To maximise the 
degrees of freedom (~) of the test, the number of 
intervals should be kept as high as possible, not- 
withstanding the other constraints. In my program 
v > 30 where there were 200 markers and z, > 8 where 
there were 50 markers. 

The match of the de-strained array with the model of 
the pre-strain array is almost invariably acceptable at the 
5% significance level (a = 0.05). Only one strain 
analysis in 1080 failed to successfully de-strain the 
strained array according to g2. The de-straining strain 
ratio (V'-R'e) which produces a minimum value of X 2 is 
the estimate of the true strain ratio ~/--R-s. 

The second method of testing randomness concerned 
the length of 'runs' in the de-strained array at each stage 
in the de-straining process. Runs of a data sequence 
(e.g. see Davis 1973) are conditions of similarity of 
adjacent intervals with respect to two alternative, mutu- 
ally exclusive states. In the present context the de- 
strained array is divided into equal angular intervals 
over its range. The number of markers (r) with long axis 
orientations lying in each interval is compared with the 
number expected (e) on the basis of a uniform distribu- 
tion. One state was defined as r ~  > e, the other as r<  e. 
Successive intervals representing the same state consti- 
tute a run. (As with the gZ-method care must be taken to 
take account of the circular nature of the distributions 
concerned). Where the number of intervals representing 
each state is >10, the total-number-of-runs in the 
sequence tends to normal. Then the standard normal 
variate, z, may be examined to establish the degree to 
which the de-strained array is random with regard to 
runs. Just as with the gZ-minimum method,  z 2 may be 
minimised. The minimum value of z 2 usually occurs at a 
de-straining ratio which closely matches the true strain 
ratio, and agrees closely with the x2-minimum strain 
estimate. 
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The runs-test can only give a strain estimate where 
there are a large number of strain markers (variable, but 
usually <50, to give at least 10 intervals of each state). 
However,  it is sensitive to a different aspect of random- 
ness from X-~ m" the present context. The minimum value 
of the X-'-statistic rarely indicates rejection of the 
hypothesis that the de-strained array is random. In 
contrast, in the present study the runs-test often rejected 
the null hypothesis at the same confidence level 
(a = 0.05) where there are less than 35 strain markers. 
(With 210 different arrays of 75 strain markers the null 
hypothesis was rejected 16 times). 

It appears useful therefore to apply the approaches of 
the x2-minimum and z2-minimum-for-runs in conjunc- 
tion. This yields two strain estimates and two tests of the 
null hypothesis. With small amounts of data, runs-test- 
ing may not yield a strain estimate, but tabled values of 
the critical number of runs are still used to provide an 
added test of the null hypothesis. 

Furthermore,  the aspect of randomness with which 
the runs-test deals may be more relevant to Rf/~b analysis 
under some circumstances. Preferred orientation pat- 
terns in pre-strain assemblages of elliptical markers may 
show clustering and anti-clustering in the angular distri- 
bution of their long axes. X 2 may indicate randomness, 
yet at the same significance level the hypothesis of 
randomness can be unacceptable with regard to the 
number of runs: 

Accuracy of the de-straining methods 

Results are indicated by the ratio of the estimated 
strain ellipse Wr-R-e to the actual strain ratio X/Rs. Our 
ultimate aim is to achieve X/--Re/Rs = 1. The graphs 
(Figs. 3 to 6) give the mean and standard deviation of 

~ / R~ for strain analyses of between 20 and 23 differ- 
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Fig. 3. Results of de-straining using the .~2-minimum method.  Esti- 
mates of the strain ellipse axial ratio VRe for 23 different sets of  25 
markers  at each of the ten true strain ellipse axial ratios (x / -~)  are 
indicated. The est imate X/R"~ is expressed as a ratio with X/RF ~ .  
The mean and s tandard deviation (error bar) of ~ are indicated 

for the 23 different tests at each strain value. 
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Fig. 4. Results of de-straining by the x : - m i n i m u m  method for larger 
sample sizes; 50, 75,100 and 200 markers.  The est imated strain ellipse 
axial ratio VR--~ is expressed as a ratio of  the true strain ellipse ratio 
X/~ .  The mean  and standard deviation (error bar) are indicated for 23 
tests of  different groups of 50 strain markers ,  for 21 tests of different 
groups of 75 and 100 strain markers  and for 20 tests of different groups 

of 200 markers.  

ent arrays of simulated field data on deformed elliptical 
markers. 

The g2-minimum method gives widely scattered esti- 
mates of the strain where there are less than 50 strain 
markers (Fig. 3). With 50 strain markers the accuracy of 
the strain estimate is remarkably improved (Fig. 4). The 
reward of improved accuracy increases slowly as the 
sample sizes increase from 75 to 200 strain markers. 

Runs-testing estimates the strain with lower accuracy 
(Fig. 5) than the X 2 method especially with fewer than 75 
strain markers. However,  the underlying test of random- 
ness of the de-strained array is less easily satisfied with 
regard to runs. In analyses of natural data, runs-testing 
may thus draw attention to arrays which cannot be 
de-strained successfully. Rejection of the hypothesis of 
randomness occurred many times in the present experi- 
ments where there were 50 or 75 strain markers (Fig. 5). 

In conclusion, within the premises of this paper, strain 
analysis by de-straining is improved when more than one 
aspect of randomness of the de-strained array is consi- 
dered. The X 2 and z2-for-runs methods give two indepen- 
dent strain estimates and two tests of the null hypothesis. 
With fewer than 50 strain markers, only the xZ-minimum 
method yields a strain estimate but both X 2 and the 
number-of-runs can be used to test the null hypothesis. 
With fewer than 75 markers only the x2-method gives 
acceptable accuracy, and accuracy does not appreciably 
improve with larger samples. The sample size has to be 
considerably larger to yield comparable accuracy with 
the z2-for-runs method. Nevertheless, the number of 
runs continued to provide an added test for randomness 
of the de-strained array. 
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Fig, 5. Results of de-straining by the zZ-minimum-for-runs method. 
(These results were achieved with exactly the same groups of markers 
considered in Fig. 4). The ratio of the estimated versus true strain 
ellip_s.e axial ratio ( ~ )  is shown for different true strain ratios 
(VR, ) .  The man and standard deviation (error bar) are indicated. 
With 100 markers 21 groups were analysed and with 200 markers 20 
groups were tested. With 75 and 50 markers it was often not possible to 
de-strain the array of markers and successfully minim randomness with 
regard to the number of runs. The number of groups of data which 
could be successfully tested is indicated by the number at the end of the 
error bars in the upper two graphs. Thus with 50 strain markers (top 
graph), at a true strain ratio of ~ = 3.0, only 17 of the 23 different 

groups of strained markers could be de-strained successfully. 

As a footnote it should be added that with the present 
assumptions the harmonic mean (Lisle 1976) is invari- 
ably as good a strain-estimator where the true strain 
ellipse ratio ~-R-s > 3.0 (Fig. 6). Strain can be undere- 
stimated by the harmonic mean but the bias, which 
decreases with advancing strain, is towards an overesti- 
mate. 
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Fig. 6. Harmonic means of the axial ratios of strained elliptical markers 
may estimate the strain ellipse axial ratio (\/-/~R,.). The average and 
standard deviations (error bars) of the ratio of estimated strain to truc 
strain X/-R~/R,. arc shown for 23 different groups of data with 25 strain 

markers and 20 different groups of 20(I strain markers. 
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